C++11新特性(75)-随机数库(Random Number Library)

从前的随机数

C++11之前,无论是C,还是C++都使用相同方式的来生成随机数,代码大致如下:

由于rand()产生的是伪随机数,所以需要为rand函数提供种子。种子不同产生的随机数序列也不同。通常的做法是调用srand(time(0)),由于time返回的是系统时间,每秒都会不同,所以产生的随机数相同几率就会变得很小。

这种方式有一个难点,就是不容易控制输出结果的范围。特别是希望不是均匀分布的时候就更难。

 

随机数库(Random Number Library)

C++11中提供了随机数库,包括随机数引擎类(random-number engines)和随机数分布类(random-number distribution)。二者一般配合使用。

随机数引擎

标准库提供了多重随机数引擎,这里以default_random_engine类为例进行说明。

到这里为止,和之前的方式没有什么本质区别,只是形式不同。别忙,接着往下看。

 

随机数分布类

C++11通过随机数分布类来控制随机数引擎生成的随机数的分布情况。

 

生成平均分布的整数

代码中使用uniform_int_distribution<int>来控制随机数引擎生成0到10之间的整数。

 

生成平均分布的实数

代码中使用uniform_real_distribution来控制随机数引擎生成0到10之间的实数。

 

生成正态分布的实数

代码中使用normal_distribution<>来控制随机数引擎生成均值为2,标准差为0.25的正态分布数据。

 

生成概率可控的布尔值

代码中使用bernoulli_distribution来控制随机数引擎生成布尔值随机数,其中1的概率为0.3。

 

输出结果

作者一句话

如果看一下C++11标准库,你会发现还有很多种随机数引擎类和随机数分布类。需要的时候去学吧。

 

觉得本文有帮助?请分享给更多人。

阅读更多更新文章,请扫描下面二维码,关注微信公众号【面向对象思考】

发布了408 篇原创文章 · 获赞 617 · 访问量 28万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 深蓝海洋 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览